THE ANTIDIABETIC EFFICACY OF AZADIRACHTA INDICA LEAVES AND SEEDS IN ALLOXAN INDUCED DIABETIC ALBINO MICE

RAJANI KUMARI^a, JIV KANT SINGH^b, PRATIBHA KUMARI^b and S.R.PADMADEO^a

a- Department of Biochemistry, Patna University, Patna, India
 b- National Applied Research Institute, Patna, India

ABSTRACT:

Diabetes mellitus is a metabolic disorder in endocrine system. In order to management of diabetic complications different part of Azadirachta indica alcoholic extraction was used in Alloxan induced diabetic mice. It was observed that treatment of the diabetic mice with ethanolic extract of leaves and seeds of A.indica at a dose of 500 mg/kg body weight and 200 mg/kg body weight for 28 days. It was observed that blood glucose level total cholesterol, triacylglycerol, ALP, SGPT and SGOT were gradually decreased after treatment with leaves and seed extract (significant fall (P<0.05). The data suggests that seeds of A.indica could be of more useful in diabetes mellitus in controlling the blood sugar or may also be helpful in preventing or delaying the onset of the disease.

Key Words: Azadirachta.indica, Diabetes mellitus, Alloxan, Antidiabetic

INTRODUCTIONS:

Diabetes is a chronic disorder disease. It may be caused by either produces little or cease insulin production, or becomes progressively resistant to its action [Ranjan C et al., 2002]. Such types of disorder becomes in metabolism of carbohydrates, proteins and fat due to absolute or relative deficiency of insulin secretion with/without varying degree of insulin resistance [Barar FSK 2000; and Devlin MT 1997]. Now it becomes an epidemic with a worldwide incidence of 5% in the general population. The number of adult diabetes person in

Corresponding Author: Rajani Kumari
E-mail :rajanicool@gmail.com

Date of Acceptance : 20.05.2018 **Date of Publication** : 01.10.2018 the world will rise from 135 million in 1995 to 300 million in the year 2025 [Torban H. 2002]. The countries with the largest number of diabetic people in the year 2025 will be India, China and United States [Ramchandran A. 2002]. There are more than 30 million people with diabetes mellitus in India and the incidence is increasing [Shankar P et al, 2001] but many patients in the community are undiagnosed. Main disabler and killer in the next coming 25 years will be due to diabetes [Edvin et al., 2006]. Patients with diabetes experience significant morbidity, mortality microvascular from (Retinopathy, neuropathy, nephropathy)

ISSN: 2349-1965 2018; 5(2); 232-239

International Journal of Basic & Applied Science Research

and macrovascular complications (heart attack, stroke and peripheral vascular disease). The complications are far less common and less severe in people who have well-controlled blood sugar levels [Andrew, 2000]. Acute complications include diabetic ketoacidosis, nonketotic hyperosmolar coma and diabetic coma. In case of chronic complication, chronic elevation of blood glucose level leads to damage to blood vessels. In diabetes, the resultant problems are grouped under "microvascular disease" (due to damage to small blood vessels) "macrovascular disease" (due to damage arteries) [Andrew, 2000]. Microvascular disease leads to retinopathy, neuropathy and nephropathy (nephropathy leads to anaemia) [Halder et al., 2003, Merlin et al., 2005]. Macrovascular disease leads to cardiovascular disease, mainly by accelerating atherosclerosis. These disorders include: (1) Coronary artery disease, leading to myocardial infarction (heart attack) or angina (2) Stroke (mainly ischemic type) (3) Peripheral vascular disease, which contributes to intermittent claudication (exertion-related foot pain) as well as diabetic foot [Andrew, 2000].

In the despite of great efforts that have been made in the understanding and management of diabetes and disease related complications are increasing unabated. Diabetes mellitus represents a heterogeneous group of disorders causing hyperglycemia, which is due to impaired carbohydrate "glucose" utilization resulting from a defective or deficient insulin secretary response. Along hyperglycemia, there are also abnormalities in serum lipids [Reaven, 1988]. The disease morbidity and long-term causes complications and an important risk factor for cardiovascular diseases (G.Y Yeh et al., 2003). Now a days, there are different groups of oral hypoglycemic drugs and insulin for clinical use, having characteristic profiles of side effects. Management of diabetes without any side effects is still a challenge to the modern medical system. This leads to increasing the demand for complementary and alternative medicine with antidiabetic activity to overcome the side effects and toxicity of synthetic drugs. There are many reports of herbal extracts being used in Ayurvedic literature as antidiabetic which are directly or indirectly used for the preparation of many modern drugs. However, these plants have not gained much importance as medicines and one of the factors is lack of specific standards being prescribed for herbal medicines and supportive animal/clinical trials. The problem becomes complicated when several active compounds are in involved in the medicinal action. Neem (Azadirachta indiaca) has also important medicinal properties and biological activities (Biswas. 2002; Kale, 2003). The efficacy of an herbal drug, to control hyperglycemia, is

ISSN: 2349-1965

Peer Reviewed and Refereed Journal Impact factor 0.9 International Journal of Basic & Applied Science Research

depends on their active constituents. This work was designed to investigate the antidiabetic efficacy of Azadirachta indica leaf and seed extract in diabetic Swiss albino mice.

MATERIALS AND METHODS:

Plant: - Fresh matured leaves and seeds of A. indica were collected from botanical garden and were taxonomically identified by Botany Department of Patna University, Bihar, India.

Preparation of Plant Extracts:

One kilogram air-dried fresh mature leaves and seeds of neem (Azadirachta indica) plants were taken, ethanolic extract was prepared at room temperature by dipping it into 95% ethanol for 48 hrs and percolate. The extract of leaves and seeds was concentrated under reduced pressure (bath temperature 450-50°C) and finally dried in a vacuum desiccator. LD50 was calculated and administered dose 500 mg/kg b.w. and 200 mg/kg b.w were prepared with suitable diluting distilled water.

ANIMALS:

The experiments were carried out with 25 to 30 gms male Swiss albino mice. Animals were housed in cage at a temperature of 25°C + 2°C with 12-12 hrs dark light cycle. Food and water were provided ad libitum (prepared mixed formulated feed by the laboratory itself). This project was approved by the DRC, Department of Biochemistry, Patna University, Patna.

INDUCTION OF DIABETES:

Alloxan (150mg/kg body wt.) [Szkudelski, 2001] was prepared in distilled water and administered into experimental Swiss albino mice by intra peritoneal (IP) injection of three times at the interval of 72 hrs. After 48 hrs of last shots of alloxan injection. diabetes was confirmed by testing blood sugar level, with the help of glucometer (Lever check Pvt. Ltd.) and chemical method. Animals have more than 200 mg/ dl blood sugar level was selected for the further study and maintained till 4 days in diabetic condition for well establishment. Experimental design: - Swiss albino mice were divided into four groups:-

Group 1- Healthy normal animals.

Group II- Untreated diabetes induced animals.

Group III- Diabetes animals treated with ethanolic extract of A.indica leaves

Group-IV- Diabetes animal treated with ethanolic extract of A.indica seeds 500 mg/kg body weight of ethanolic extract of A.indica leaves and 200 mg/kg b.w of A.indica seeds was orally administered per day for successive 28 days. Whole blood was collected from retro orbital vein puncture (Madway et al., 1969) into sodium fluoride treated tubes and for other biochemical test; blood was collected in plane tubes. Plasma / Serum were separated by centrifugation.

Assay:

Serum glucose, Total cholesterol, Triacylglycerol, ALP, SGPT and SGOT were measured by standard kits.

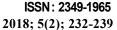
ISSN: 2349-1965

2018; 5(2); 232-239 International Journal of Basic & Applied Science Research

Statistical Data:

Comparison between control and drug treated groups were analysed by Graph Pad Prizm 5.04 software with one way ANOVA. The results were expressed as mean \pm Standard Error of Mean (S.E.M), n = 10. P-Values < 0.001 were considered to be statistically significant.

Result and discussion:


Table 1 presents data of various biochemical parameters of peripheral blood serum of different groups of Swiss albino mice. Group I healthy Normal animals, Group II Untreated diabetes induced animals, Group III Diabetes animals treated with ethanolic extract of A.indica leaves, Group-IV- Diabetes

animal treated with ethanolic extract of A.indica seeds. Experimental results showed a significant increase in blood glucose level in the alloxan treated diabetic group by 226 %, (Table -1), compared to that of normal control. While the oral administration of ethanolic extract of A.indica leaves and seeds significantly decreased by 41.83 %, and 48.7%, respectively as compared with the diabetic control mice. This finding run parallel with that obtained by Sonia Bajaj *et al.*, (1999), Halim (2003), Akbar Waheed et al., (2006), Hamdy et al., (2008) and Atangwho et al., (2009). The exact mechanism in reducing blood glucose level is not well understood.

Table 1:Effect of ethanolic extract of leaves and seeds of A.indica on the blood glucose and some other biochemical assay.

Group	Blood Glucose	Cholesterol	Triacylglycerol	SGPT	SGOT	ALP
	(mg/dl)	(mg/dl)	(mg/dl)	(IU/L)	(IU/L)	(IU/L)
Normal Control	120.2 <u>+</u> 1.8	71.8 <u>+</u> 3.1	96.1 <u>+</u> 4.7	18.8 ± 1.3	35.1 <u>+</u> 1.7	32.3 <u>+</u> 2.5
Diabetic Control	392.8 <u>+</u> 23.7	150.2 <u>+</u> 8.2	214.5 <u>+</u> 8.2	42 <u>+</u> 2.1	56.9 <u>+</u> 2.2	71.9 <u>+</u> 1.9
Diabetic+ A. indica leaves	228.5 <u>+</u> 12.3	106.4 <u>+</u> 2.5	170.2 <u>+</u> 9.8	24.2 <u>+</u> 1.7	32.4 <u>+</u> 3.1	37.5 <u>+</u> 3.0
Diabetic + A. indica seed	201.5 ± 10	111.4±3	151.6±5.0	23.1±1.5	28.5 ± 3.0	40.2±3.0

Mean + SEM, n=10, P < 0.01 in student's test

International Journal of Basic & Applied Science Research

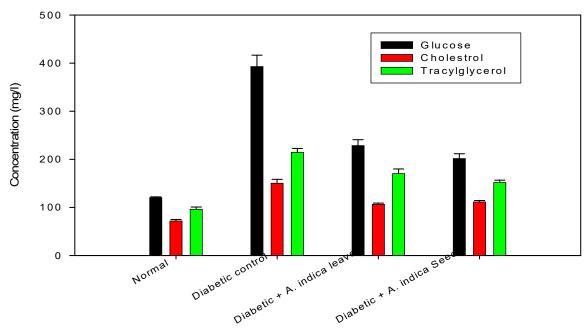


Fig 1 Different group of Swice albino mice

Fig.1. Effect of aqueous extract of leaves and seeds of *A.indica* on the blood glucose, cholesterol and Triacylglycerol assay.

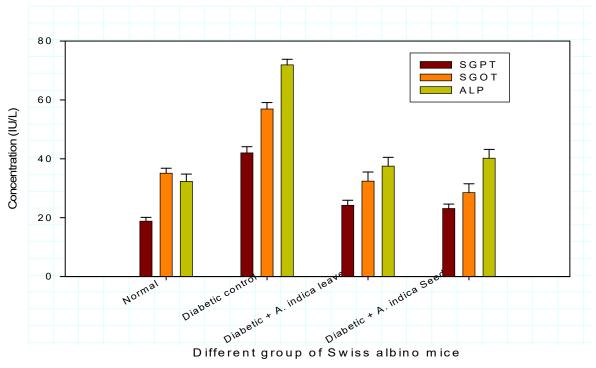


Fig. 2 Effect of ethanolic extract of leaves and seeds of A.indica on the blood

International Journal of Basic & Applied Science Research

Moreover, our study was run to evaluate the effect of ethanolic extract of A.indica on lipid profile and liver function in the alloxan diabetic mice. In Alloxan-induced diabetes mellitus, the rise in blood glucose is accompanied by an increase in total cholesterol, triacylglycerol, ALP, SGPT and SGOT level. The results are agree with earlier data (Sharma et al., 1996; Wasan et al., 1998; Roy et al., 1998; Defronzo 1999; Vuksan et al., 2000; Pushparaj et al., 2000). The present study revealed that the treatment of diabetic mice with A.indica ethanolic extract of leaves and seeds for a 28 days period caused a significant reduction in total cholesterol and triacylglycerol is (29.16%), and (20.64%) & 25.6% and 24.6% respectively in fig.1. Similarly upon treatment with the extracts of A. indica leaves and seeds, the activities of SGPT, SGOT and ALP are reduced significantly by SGPT (42.44%), SGOT (43.06%) and ALP (47.84%) & SGPT (45%), SGOT (49.9%) and ALP (44.0%) respectively was shown in fig.2. The mechanism of reducing blood glucose might be due to increased uptake of glucose peripherally, increased sensitivity of insulin receptor or blocking the action of epinephrine on glycogenolysis (Chattopadhyay 1996, 2005).

CONCLUSION:

By the present investigation ethanolic extract of leaves and seeds of A.indica has properties to reduced blood glucose level

as well as lipid profile & liver function test (SGPT and SGOT). Although the ethanolic extract of leaves and seeds of A.indica chemical compounds for the hyperglycaemic effects still remain speculative, experimental evidence obtained in the present laboratory animal study indicates that A.indica leaves and seeds extract possesses antidiabetic property. The data suggests that seeds of A.indica could be of more useful in preventing in controlling the blood sugar. Future research to refine the extraction procedure of A.indica leaves and seeds can lead to improve and more experiments is needed for knowing mechanism of action of these plant extract. This plant leaves and seed may be help full in the controlling of diabetes and its complications.

ACKNOWLEDGEMENT:

Authors are great thankful to the Department of Biochemistry, Patna providing University, Patna for infrastructural support and laboratory facility.

REFERENCES:

- 1. FSK. Barar Essentials of Pharmacotherapeutics. 3rd ed. S.Chand and Company Ltd: New Delhi; 2000.
- Devlin MT. Text book of Bio Chemistry. 4th edn. Wileyliss Inc: NewYork; 1997.

2018; 5(2); 232-239 International Journal of Basic & Applied Science Research naturotherapy. Int J Green Pharm Ranjan C, Ramanujam R. Diabetes 2006; 1:15-28.

325.

- 3. and insulin resistance associated disorders: Disease and the therapy. Curr Sci. 2002;83:1533-38.
- 4. Torben H. Genetics of Type 2 diabetes. Curr Sci 2002;83:1477-82.
- 5. Ramachandran A, Snehalatha C, Vijay V. Burden of type 2 diabetes and its complications – The Indian scenario. Curr Sci 2002;83:1471-76.
- 6. Shankar Ρ, Sundarka MK. Management of Type 2 Diabetes: Evidence Based Approach. J Indian Acad Clin Med 2001;2:244-50.
- 7. Edwin E, Sheeja E, Gupta VB, Jain DC. Fight Diabetes the herbal way. Express Pharma review 2006;1:41-2.
- 8. Andrew JK. Diabetes. Churchill living stone: New York; 2000.
- 9. Halder N, Joshi S, Gupta SK. Lens aldose reductase inhibiting potential of some indigenous plants. J Ethnopharmacol 2003;86:113-6.
- 10. Merlin T, Con T, Richard M, George J. Anaemia in Diabetes: An Emerging Complication of Microvascular Disease. Curr Diab Rev 2005;1:107-26.
- 11. Alam K, Mahpara S. Role of Diet, Nutrients, Spices and Natural Products in Diabetes Mellitus. Pakistan J Nutr 2003;2:1-12.
- 12. Lokesh D, Amit SD. Diabetes mellitus- its possible pharmacological evaluation techniquesand

13. Akbar Waheed, Ga Miana and Si Ahmad. Clinical investigation of hypoglycaemic effect of seeds of Azadirachta indica in Type -2 (NIDDM) diabetes mellitus. Pak. J. Pharm. Sci. Vol. 2006; 19(4), 322-

ISSN: 2349-1965

- 14. Biswas K.; Chattepadhya, I.; Banergee, R. K.; BandyopadhyayiU. Biological activities and medicinal properties of neem (Azadirachta indica). Current Science, 2002; 82(II), 1336 – 1345.
- 15. Chattopadhyay, R.R., Possible mechanism of antibyperglycemic effect of Azadirachta indica leaf extract. Part: IV. General Pharmacology (USA) 1996; 27 (3), 431–434.
- 16. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131:281-303.
- Halim, E. M. Lowering of blood sugar 17. by water extract of Azadirachta indica and Abroma augusta in diabetes rats. Indian. J. Exp. Biol., 2003; 41(6):636-640.
- 18. Hamdy M. A. Hassanein and Hanan A. Okail. Toxicity determination and hypoglycaemic effect of neem biopesticide on the grass carp "Ctenopharyngodon idella". Egypt. Acad. J. biolog. Sci., 2008; 1 (2) 37 -49

ISSN: 2349-1965 2018; 5(2); 232-239

International Journal of Basic & Applied Science Research

- 19. Item Justin Atangwho, Patrick E 25. Ebong, Godwin E. Egbung and Ime F. Ani. Effects of Co-administration of Extracts of Vernonia Amygdalina and Azadirachta indica on Serum Electrolyte Profile of Diabetic and non-diabetic Rats. Australian Journal of Basic and Applied Sciences, 2009; 3(3): 2974-2978. 26.
- 20. Kale, B.P., M.A. Kothekar, H.P.Tayode, J.B.Jaju and M. Mateenuddin, Effect of aqueous extracts of Azadirachta indica leaves 27. on hepatotoxicity induced by antitubercular drug in rats. Ind.J.Pharm, 2003; 35: 177-180.
- 21. Madway *et al.*, W. Madway, I.E. Prier and J.S. Wilkinson, A Text Book of Veterinary Clinical Pathology, The Williams and Wilkins Co., Baltimore (1969).
- 22. Pushparaj, P., c.h. Tan and B.K.H. Tan. Effect of Averrhoe bilimli leaf extract on Blood gulcose and lipids in streptozotocin diabetic rats. J.Ethnopharmacol. 2000; 72:69-76.
- 23. Reaven, G.M. Reaven, Role of insulin resistance in human disease, Diabetes 37 (1988), 1597–1607.
- 24. Roy, O.; Perrault,M. and Mareffe, A. Insulin stimulation of glucose uptake in skeletal muscle and adipose tissue in vivo is no dependent. Am. J. Physiol. 1998; 274: E 692: E 699.

- R. R. Chattopadhyay and M. Banyopadhyay (2005). Effect of Azadirachta indica leaf extract on serum lipid profile changes in normal and sreptozotocin induced diabetic rats. African Journal of Biomedical Research, Vol.8 No.2, 101-104.
- 26. Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 2001; 50: 536-546.
- 27. Sonia Bajaj, *et al.* Investigations into the anti-diabetic activity of Azadirachta indica. Indian J. of Pharmacology; 1999; 31: 138-141.
